Задачи, связанные с обработкой списков, на практике встречаются очень часто. Скажем, нам понадобилось составить список студентов, находящихся в аудитории. С помощью Пролога мы можем определить список как последовательность термов, заключенных в скобки. Приведем примеры правильно построенных списков Пролога:
[андрей, александр, борис, владимир, александр]
[имя (александр, иванов), возраст (андрей, 24), X]
[Х.У.дата (12,январь, 1986) ,Х]
[]
Запись [H|T] определяет список, полученный добавлением Н в начало списка Т. Говорят, что Н - голова, а Т - хвост списка [HIT]. На вопрос
?-L=[a | [b, c, d]]. будет получен ответ
L=[a, b, c, d]
а на запрос
?-L= [a, b, c, d], L2=[2 | L]. - ответ
L=[a, b, c, d], L2- [2, a, b, c, d]
Запись [Н | Т] используется для того, чтобы определить голову и хвост списка. Так, запрос
?- [X | Y]=[a, b, c]. дает
Х=а, Y=[b, c]
Заметим, что употребление имен переменных Н и Т необязательно. Кроме записи вида [H|T], для выборки термов используются переменные. Запрос
?-[a, X, Y]=[a, b, c].
определит значения
X=b
Y=c
а запрос
?- [личность(Х) | Т]=[личность(александр), а, b].
значения
Х=александр
Т=[а, Ь]
Покажем на примерах, как можно использовать запись вида [Н | T] вместе с рекурсией для определения некоторых полезных целевых утверждений для работы со списками.
Принадлежность списку. Сформулируем задачу проверки принадлежности данного терма списку.
Граничное условие:
Терм R содержится в списке [H|T], если R=H.
Рекурсивное условие:
Терм R содержится в списке [H|T], если R содержится в списке Т.
Первый вариант записи определения на Прологе имеет вид:
содержится (R, L) :-
L=[H I T],
H=R.
содержится(Р, L) :-
L=[H|T],
содержится (R, T).
Цель L=[H I T] в теле обоих утверждений служит для того, чтобы разделить список L на голову и хвост.
Можно улучшить программу, если учесть тот факт, что Пролог сначала сопоставляет с целью голову утверждения, а затем пытается согласовать его тело. Новая процедура, которую мы назовем принадлежит, определяется таким образом:
принадлежит (R, [R | Т]).
принадлежит (R, [H | Т]) :- принадлежит (R, T).
На запрос
?- принадлежит(а, [а, Ь, с]).
будет получен ответ
да
на запрос
?- принадлежит(b, [a, b, с]).
- ответ
да
но на запрос
?- принадлежит(d, (a, b, c)).
Пролог дает ответ
нет
В большинстве реализации Пролога предикат принадлежит является встроенным.
Соединение двух списков. Задача присоединения списка Q к списку Р, в результате чего получается список R, формулируется следующим образом:
Граничное условие:
Присоединение списка Q к [] дает Q.
Рекурсивное условие:
Присоединение списка Q к концу списка Р выполняется так: Q присоединяется к хвосту Р, а затем спереди добавляется голова Р.
Определение можно непосредственно написать на Прологе:
соединить([],0,0).
соединить(Р,Q,Р) :-
Р=[НР | ТР],
соединить(TP, Q, TR),
R=[HP | TR].
Однако, как и в предыдущем примере, воспользуемся тем, что Пролог сопоставляет с целью голову утверждения, прежде чем пытаться согласовать тело:
присоединить([] ,Q,Q).
присоединить(HP | TP], Q, [HP | TR]) :-
присоединить (TP, Q, TR).
На запрос
?- присоединить [а, b, с], [d, e], L).
будет получен ответ
L = [a, b, c, d].
но на запрос
?- присоединить([a, b], [c, d], [e, f]).
ответом будет
нет
Часто процедура присоединить используется для получения списков, находящихся слева и справа от данного элемента:
присоединить (L [владимир, р], [андрей, петр, владимир, тимофей, владимир, федор] ) .
L = [андрей, петр]
R = [тимофей, владимир, федор]
другие решения (да/нет)? да
L=[андрей, петр, владимир, тимофей]
R=[федор]
другие решения (да/нет)? да
других решений нет
Индексирование списка. Задача получения N-ro терма в списке определяется следующим образом:
Граничное условие:
Первый терм в списке [Н | Т] есть Н.
Рекурсивное условие:
N-й терм в списке [Н | Т] является (N-I)-м термом в списке Т.
Данному определению соответствует программа:
% Граничное условие:
получить ([H | Т], 1, Н). /* Рекурсивное условие:
получить([Н | Т], N, У) :-
М is N - 1,
получить (Т, М ,Y).
Построение списков из фактов. Иногда бывает полезно представить в виде списка информацию, содержащуюся в известных фактах. В большинстве реализации Пролога есть необходимые для этого предикаты:
bagof(X,Y,L) определяет список термов L, конкретизирующих переменную Х как аргумент предиката Y, которые делают истинным предикат Y.
setof(X,Y,L) все сказанное о предикате bagof относится и к setof, за исключением того, что список L отсортирован и из него удалены все повторения.
Если имеются факты:
служащий (максим).
служащий (иван).
служащий (сергей).
служащий (иван).
то на запрос
?- bagof(D, служащий(D), L),
будет получен ответ
L=[ максим, иван, сергей, иван]
в то время как
?-setof(D, служащий(D), L). дает значение
L=[иван, максим, сергей].
|