Навигация
Главная
Поиск
Форум
FAQ's
Ссылки
Карта сайта
Чат программистов

Статьи
-Delphi
-C/C++
-Turbo Pascal
-Assembler
-Java/JS
-PHP
-Perl
-DHTML
-Prolog
-GPSS
-Сайтостроительство
-CMS: PHP Fusion
-Инвестирование

Файлы
-Для программистов
-Компонеты для Delphi
-Исходники на Delphi
-Исходники на C/C++
-Книги по Delphi
-Книги по С/С++
-Книги по JAVA/JS
-Книги по Basic/VB/.NET
-Книги по PHP/MySQL
-Книги по Assembler
-PHP Fusion MOD'ы
-by Kest
Professional Download System
Реклама
Услуги

Автоматическое добавление статей на сайты на Wordpress, Joomla, DLE
Заказать продвижение сайта
Программа для рисования блок-схем
Инженерный калькулятор онлайн
Таблица сложения онлайн
Популярные статьи
OpenGL и Delphi... 65535
Форум на вашем ... 65535
HACK F.A.Q 65535
Бип из системно... 65535
Гостевая книга ... 65535
Invision Power ... 65535
Содержание сайт... 65535
Организация зап... 65535
Вызов хранимых ... 65535
Программируемая... 65535
Эмулятор микроп... 65535
Подключение Mic... 65535
Создание потоко... 65535
Приложение «Про... 65535
Оператор выбора... 65535
Модуль Forms 62798
Создание отчето... 62779
ТЕХНОЛОГИИ ДОСТ... 59322
Пример работы с... 58045
Имитационное мо... 54708
Реклама
Сейчас на сайте
Гостей: 9
На сайте нет зарегистрированных пользователей

Пользователей: 13,071
новичок: virtualight
Новости
Реклама
Выполняем курсовые и лабораторные по разным языкам программирования
Подробнее - курсовые и лабораторные на заказ
Delphi, Turbo Pascal, Assembler, C, C++, C#, Visual Basic, Java, GPSS, Prolog, 3D MAX, Компас 3D
Заказать программу для Windows Mobile, Symbian

Моделирование работы узла коммутации сообщений на GPSS + Пояснительная з...
Диплом - база данных поставщиков на Delphi (MS Sql Server)+ Пояснительна...
Моделирование вычислительного центра на GPSS + Отчет + Блок схема

Реклама



Подписывайся на YouTube канал о программировании, что бы не пропустить новые видео!

ПОДПИСЫВАЙСЯ на канал о программировании
10.4. Принцип резолюций и доказательство теорем


Теперь, когда мы имеем способ, позволяющий представлять формулы исчисления предикатов в такой аккуратной и привлекательной форме, рассмотрим, что можно делать с ними далее. Очевидно, можно исследовать вопрос о том, следует ли что-либо интересное из некоторой заданной совокупности высказываний. То есть интересно исследовать, к каким следствиям они приводят. Высказывания, которые исходно считаются истинными, называются аксиомами или гипотезами, а высказывания, которые следуют из них, называются теоремами. Введенные понятия согласуются с терминологией, используемой при описании такого подхода к математике, когда работа математика представляется как процесс получения все новых и новых интересных теорем из таких хорошо аксиоматизированных областей, какими являются теория множеств и теория чисел. В этом разделе будут кратко рассмотрены вопросы получения интересных следствий для заданного множества высказываний, то есть вопросы доказательства теорем.
В 60-х годах в этой области наблюдалась большая активность, связанная с возможностью использования вычислительных машин для автоматического доказательства теорем. Именно эта область научной деятельности, по-прежнему остающаяся источником новых идей и методов, дала жизнь идеям, легшим в основу Пролога. Одним из фундаментальных достижений того времени явилось открытие Дж. А. Робинсоном принципа резолюций и его применение к автоматическому доказательству теорем. Резолюция – это правило вывода, говорящее о том, как одно высказывание может быть получено из других. Используя принцип резолюций, можно полностью автоматически доказывать теоремы, выводя их из аксиом. Необходимо лишь решать, к каким из высказываний следует применять правило вывода, а правильные следствия из них будут строиться автоматически.
Правило резолюций разрабатывалось применительно к формулам, представленным в стандартной форме. Если заданы два дизъюнкта, связанных между собой определенным образом, то это правило породит новый дизъюнкт, являющийся следствием двух первых. Главная идея состоит в том, что, если одна и та же атомарная формула появляется как в левой части одного дизъюнкта, так и в правой части другого дизъюнкта, то дизъюнкт, получаемый в результате соединения этих двух дизъюнктов, из которых вычеркнута упоминавшаяся повторяющаяся формула, является следствием указанных дизъюнктов. Например,
Из
унылый(крист); сердитый(крис):- рабочий_день(сегодня), идет_дождь(сегодня).



и
неприятный(крис):- сердитый(крис), усталый(крис).



следует
унылый(крис); неприятный(крис):- рабочий_день(сегодня), идет_дождь(сегодня), усталый(крис).



На естественном языке это звучит так. Если сегодня рабочий день и идет дождь, то Крис – унылый или сердитый. Кроме того, если Крис сердитый и усталый, то он неприятен. Поэтому, если сегодня рабочий день, идет дождь и Крис усталый, то Крис является унылым или неприятным.
В действительности, мы сильно упростили ситуацию, опустив два момента. Прежде всего, ситуация усложняется, когда дизъюнкты содержат переменные. В такой ситуации две атомарные формулы не обязательно должны быть идентичными – они должны быть лишь «сопоставимы». Кроме того, дизъюнкт, являющийся следствием двух других дизъюнктов, получается в результате их соединения (с удалением повторяющейся формулы) с помощью некоторой дополнительной операции. Эта операция включает в себя «конкретизацию» переменных до такой степени, чтобы две сопоставляемые формулы стали идентичными. Используя терминологию Пролога, можно сказать, что, если имелось два дизъюнкта, представленных в виде структур, и было выполнено сопоставление соответствующих подструктур, то результат соединения этих структур и был бы представлением нового дизъюнкта. Второе упрощение состоит в том, что в общем случае, правило резолюций допускает сопоставление нескольких литералов в правой части одного дизъюнкта с несколькими литералами в левой части другого дизъюнкта. Здесь будут рассматриваться лишь примеры, когда из каждого дизъюнкта выбирается один литерал.
Рассмотрим один пример применения правила резолюций при наличии переменных:
человек(f1(Х)); король(Х):-. (1)
король(Y):- почитает(f1(Y),Y). (2)
почитает(Z,артур):- человек(Y). (3)



Два первых дизъюнкта представляют стандартную форму формулы, которую можно выразить так: «если каждый человек почитает кого-то, то этот кто-то – король». Переменные переименованы для удобства объяснения. Третий дизъюнкт выражает высказывание о том, что каждый человек почитает Артура. Применяя правило резолюций к (2) и (3) (сопоставляя два соответствующих литерала), получаем:
король(артур):- человек(f1(артур)). (4)
( Y в (2) сопоставлен с артур в (3), a Z в (3) сопоставлен с fl(Y) в (2)). Теперь можно применить правило резолюций к (1) и (4), что дает:
король(артур); король(артур):-.
Это эквивалентно факту, гласящему, что Артур является королем.
В формальном определении метода резолюций процедура «сопоставления», на которую мы неформально ссылались, называется унификацией. Интуитивно, множество атомарных формул унифицируемо, если эти формулы могут быть сопоставлены друг с другом как структуры языка Пролог. В действительности, как это будет показано в одном из следующих разделов, процедура сопоставления, используемая в большинстве реализаций языка Пролог, не совпадает в точности с унификацией.
Как можно использовать метод резолюций для доказательства конкретных утверждений? Один из возможных способов состоит в том, чтобы последовательно, шаг за шагом, применять правило резолюций к имеющимся гипотезам и посмотреть, не появилось ли при этом то, что мы хотим доказать. К сожалению, нельзя гарантировать, что это в конце концов произойдет, даже если интересующее нас высказывание действительно следует из имеющихся гипотез. Так, например, в последнем примере нельзя вывести простой дизъюнкт король(артур) , исходя из данного множества дизъюнктов и используя лишь указанный метод, несмотря даже на то, что это очевидное следствие. Следует ли отсюда, что метод резолюций не является достаточно мощным средством для наших целей? К счастью, ответом на этот вопрос является «нет», так как можно переформулировать постановку задачи таким образом, что метод резолюций гарантированно сможет решить ее, если это в принципе возможно.
Метод резолюций имеет одно важное формальное свойство – он является полным для доказательства несовместности множества дизъюнктов. Это значит, что если множество дизъюнктов несовместно, то используя метод резолюций всегда можно вывести из данного множества дизъюнктов пустой дизъюнкт:
:-.
Кроме того, так как метод резолюций является корректным, то единственное, что он может вывести в такой ситуации – это пустой дизъюнкт. Множество формул несовместно, если не существует интерпретации предикатов, констант и функциональных символов, делающей истинными одновременно все эти формулы. Пустой дизъюнкт является логическим выражением ложности - он представляет высказывание, которое ни при каких условиях не может быть истинным. Таким образом, метод резолюций наверняка определит, когда заданное множество формул является несовместным, выведя пустой дизъюнкт, являющийся выражением противоречия.
Каким образом это свойство метода резолюций может помочь нам? Имеет место следующий факт:
Если множество формул { А 1 , A 2 ,…, А n } совместно, то формула В является следствием формул { A l , A 2 ,…, A n } тогда и только тогда, когда множество формул { А 1 , A 2 ,…, А n ⌉ В } - несовместно.
Таким образом, если множество гипотез совместно, то необходимо лишь добавить к нему дизъюнкты, соответствующие отрицанию высказывания, которое следует доказать. Резолюция даст пустой дизъюнкт в точности тогда, когда доказываемое высказывание следует из данных гипотез. Дизъюнкты, добавляемые к множеству гипотез, называются целевыми дизъюнктами. Отметим, что целевые дизъюнкты ничем не отличаются от гипотез – и те и другие являются дизъюнктами. Так что, если задано множество дизъюнктов { А 1 , А 2 , …, А п } и требуется проверить несовместность этого множества дизъюнктов, то в действительности невозможно определить, идет ли речь о доказательстве того, что ⌉ А 1 следует из A 2 , А 3 , …, А п или что ⌉ А 2 следует из A 1 , A 3 , … , А n , или что ⌉ А 3 следует из А 1 , А 2 , A 4 ,…, А n и так далее. Именно это является причиной того, что необходимо указывать какие дизъюнкты в действительности являются целевыми дизъюнктами. Для системы, использующей метод резолюций, все перечисленные задачи эквивалентны.
Легко увидеть, как можно получить пустой дизъюнкт в примере с королем Артуром, если добавить целевой дизъюнкт:
:- король(артур). (5)
(это дизъюнкт для ~король(артур) ). Ранее уже было показано, как дизъюнкт
король(артур); король(артур):-. (6)
может быть выведен из гипотез. Применяя правило резолюций к (5) и (6) (сопоставляя любую из атомарных формул в (5)), получаем:
король(артур):-. (7)
И наконец, резолюция дизъюнктов (6) и (7) дает
:-.
Таким образом, использование метода резолюций позволило доказать следствие, что Артур является королем.
Полнота метода резолюций является полезным математическим свойством. Это свойство означает, что, если некоторый факт следует из гипотез, то имеется возможность доказать его истинность (показав несовместность множества дизъюнктов, содержащего гипотезы и отрицание доказываемого факта)» используя для этого метод резолюций. Однако, когда мы говорим, что методом резолюций можно вывести пустой дизъюнкт, это значит, что существует последовательность шагов, на каждом из которых правило резолюций применяется к аксиомам или к дизъюнктам выведенным на предыдущих шагах, и эта последовательность заканчивается выводом дизъюнкта, не содержащего литералов. Единственная проблема – найти соответствующую последовательность шагов. Так как, хотя метод резолюций и говорит о том, как получить следствие двух дизъюнктов, он не сообщает, какие дизъюнкты выбрать для очередного шага и какие литералы в этих дизъюнкциях необходимо «сопоставить». Обычно, если имеется большое количество гипотез, то существует и много вариантов выбора среди них. Более того, на каждом шаге выводится новый дизъюнкт и он тоже становится кандидатом на участие в последующей обработке. Большинство из имеющихся возможностей выбора дизъюнктов и литералов в них не имеют отношения к решаемой задаче и, если не производить тщательного отбора среди кандидатов, то можно потратить слишком много времени на бесплодные поиски, а путь, ведущий к решению, так и не найти.
На решение этих вопросов направлено много различных улучшений исходного принципа резолюций. В следующем разделе рассматриваются некоторые из них.
Опубликовал Kest July 10 2009 12:29:11 · 0 Комментариев · 11013 Прочтений · Для печати

• Не нашли ответ на свой вопрос? Тогда задайте вопрос в комментариях или на форуме! •


Комментарии
Нет комментариев.
Добавить комментарий
Имя:



smiley smiley smiley smiley smiley smiley smiley smiley smiley
Запретить смайлики в комментариях

Введите проверочный код:* =
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, залогиньтесь или зарегистрируйтесь для голосования.

Нет данных для оценки.
Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Поделиться ссылкой
Фолловь меня в Твиттере! • Смотрите канал о путешествияхКак приготовить мидии в тайланде?
Загрузки
Новые загрузки
iChat v.7.0 Final...
iComm v.6.1 - выв...
Visual Studio 200...
CodeGear RAD Stud...
Шаблон для новост...

Случайные загрузки
Пример работы с б...
Delphi World 6.0
Клавиатурный трен...
Ильдар Хабибуллин...
TelBook
Язык программиров...
PHP 5 на примерах
ProLIB18
Динамические за...
Фундаментальные а...
Секреты программи...
SMLPack v1.0
С# для профессион...
Искусство програм...
Экранная лупа
Counter [Исходник...
Язык программиров...
Halcyon
Алгоритм трассиро...
CoolHints2k v1.03

Топ загрузок
Приложение Клие... 100421
Delphi 7 Enterp... 84916
Converter AMR<-... 20061
GPSS World Stud... 11952
Borland C++Buil... 11404
Borland Delphi ... 8368
Turbo Pascal fo... 7007
Visual Studio 2... 4984
Калькулятор [Ис... 4622
FreeSMS v1.3.1 3529
Случайные статьи
Как купить мед спр...
Последовательность...
Процедура SetAllPa...
Другие режимы базо...
Процессоры XSLT
Информация о топол...
6.1. Пример
Прямые методы сорт...
Адаптеры функторов
Разработать прикла...
Виртуальное наслед...
Окно предваритель...
БЛОКИ, ОПИСЫВАЮЩИЕ...
Блок дАМА
Конфигурации сетей...
Шифрование сообщен...
Выигрышные качеств...
Использование моду...
Основные понятия и...
Конъюнкция целей
9.5. Введение доп...
Арифметические пер...
Что нужно сделать ...
Одноранговые комму...
Потоки ввода-вывода
Статистика



Друзья сайта
Программы, игры


Полезно
В какую объединенную сеть входит классовая сеть? Суммирование маршрутов Занимают ли таблицы память маршрутизатора?